Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55.152
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(17): e2401716121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38625937

RESUMO

Serine phosphorylations on insulin receptor substrate 1 (IRS-1) by diverse kinases aoccur widely during obesity-, stress-, and inflammation-induced conditions in models of insulin resistance and type 2 diabetes. In this study, we define a region within the human IRS-1, which is directly C-terminal to the PTB domain encompassing numerous serine phosphorylation sites including Ser307 (mouse Ser302) and Ser312 (mouse 307) creating a phosphorylation insulin resistance (PIR) domain. We demonstrate that the IRS-1 PTB-PIR with its unphosphorylated serine residues interacts with the insulin receptor (IR) but loses the IR-binding when they are phosphorylated. Surface plasmon resonance studies further confirm that the PTB-PIR binds stronger to IR than just the PTB domain, and that phosphorylations at Ser307, Ser312, Ser315, and Ser323 within the PIR domain result in abrogating the binding. Insulin-responsive cells containing the mutant IRS-1 with all these four serines changed into glutamates to mimic phosphorylations show decreased levels of phosphorylations in IR, IRS-1, and AKT compared to the wild-type IRS-1. Hydrogen-deuterium exchange mass spectrometry experiments indicating the PIR domain interacting with the N-terminal lobe and the hinge regions of the IR kinase domain further suggest the possibility that the IRS-1 PIR domain protects the IR from the PTP1B-mediated dephosphorylation.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Camundongos , Humanos , Animais , Fosforilação , Serina/metabolismo , Receptor de Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Linhagem Celular , Fosfoproteínas/metabolismo , Insulina/metabolismo
2.
Life Sci ; 345: 122608, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38574885

RESUMO

BACKGROUND AND AIMS: The protein phosphatase 1 regulatory inhibitor subunit 1A (PPP1R1A) has been linked with insulin secretion and diabetes mellitus. Yet, its full significance in pancreatic ß-cell function remains unclear. This study aims to elucidate the role of the PPP1R1A gene in ß-cell biology using human pancreatic islets and rat INS-1 (832/13) cells. RESULTS: Disruption of Ppp1r1a in INS-1 cells was associated with reduced insulin secretion and impaired glucose uptake; however, cell viability, ROS, apoptosis or proliferation were intact. A significant downregulation of crucial ß-cell function genes such as Ins1, Ins2, Pcsk1, Cpe, Pdx1, Mafa, Isl1, Glut2, Snap25, Vamp2, Syt5, Cacna1a, Cacna1d and Cacnb3, was observed upon Ppp1r1a disruption. Furthermore, silencing Pdx1 in INS-1 cells altered PPP1R1A expression, indicating that PPP1R1A is a target gene for PDX1. Treatment with rosiglitazone increased Ppp1r1a expression, while metformin and insulin showed no effect. RNA-seq analysis of human islets revealed high PPP1R1A expression, with α-cells showing the highest levels compared to other endocrine cells. Muscle tissues exhibited greater PPP1R1A expression than pancreatic islets, liver, or adipose tissues. Co-expression analysis revealed significant correlations between PPP1R1A and genes associated with insulin biosynthesis, exocytosis machinery, and intracellular calcium transport. Overexpression of PPP1R1A in human islets augmented insulin secretion and upregulated protein expression of Insulin, MAFA, PDX1, and GLUT1, while silencing of PPP1R1A reduced Insulin, MAFA, and GLUT1 protein levels. CONCLUSION: This study provides valuable insights into the role of PPP1R1A in regulating ß-cell function and glucose homeostasis. PPP1R1A presents a promising opportunity for future therapeutic interventions.


Assuntos
Células Secretoras de Insulina , Ilhotas Pancreáticas , Humanos , Ratos , Animais , Ilhotas Pancreáticas/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Secreção de Insulina/genética , Linhagem Celular , Glucose/metabolismo , Canais de Cálcio/metabolismo
3.
Chem Pharm Bull (Tokyo) ; 72(4): 365-373, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38569867

RESUMO

Obesity is known to be associated with increased inflammation and dysregulated autophagy, both of which contribute to insulin resistance. Saikosaponin-A (SSA) has been reported to exhibit anti-inflammatory and lipid-lowering properties. In this research, we employed a combination of computational modeling and animal experiments to explore the effects of SSA. Male C57BL/6 mice were categorized into four groups: normal diet, high-fat diet (HFD), HFD + atorvastatin 10 mg/kg, and HFD + SSA 10 mg/kg. We conducted oral glucose and fat tolerance tests to assess metabolic parameters and histological changes. Furthermore, we evaluated the population of Kupffer cells (KCs) and examined gene expressions related to inflammation and autophagy. Computational analysis revealed that SSA displayed high binding affinity to tumor necrosis factor (TNF)-α, nuclear factor (NF)-κB, fibroblast growth factor 21 (FGF21), and autophagy-related 7 (ATG7). Animal study demonstrated that SSA administration improved fasting and postprandial glucose levels, homeostatic model assessment of insulin resistance (HOMA-IR) index, as well as triglyceride, free fatty acid, total cholesterol, low-density lipoprotein cholesterol (LDL-C)-cholesterol, and high-density lipoprotein cholesterol (HDL-C)-cholesterol levels in HFD-fed mice. Moreover, SSA significantly reduced liver weight and fat accumulation, while inhibiting the infiltration and M1 activation of KCs. At the mRNA level, SSA downregulated TNF-α and NF-κB expression, while upregulating FGF21 and ATG7 expression. In conclusion, our study suggests that SSA may serve as a therapeutic agent for addressing the metabolic complications associated with obesity. This potential therapeutic effect is attributed to the suppression of inflammatory cytokines and the upregulation of FGF21 and ATG7.


Assuntos
Experimentação Animal , Resistência à Insulina , Ácido Oleanólico/análogos & derivados , Saponinas , Camundongos , Masculino , Animais , Resistência à Insulina/fisiologia , Camundongos Endogâmicos C57BL , Obesidade/tratamento farmacológico , Fígado , Inflamação/metabolismo , Glucose/metabolismo , Colesterol , Dieta Hiperlipídica/efeitos adversos , Fator de Necrose Tumoral alfa/metabolismo , Insulina/metabolismo
4.
Front Endocrinol (Lausanne) ; 15: 1295677, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572473

RESUMO

The liver plays pivotal roles in nutrient metabolism, and correct hepatic adaptations are required in maternal nutrient metabolism during pregnancy. In this review, hepatic nutrient metabolism, including glucose metabolism, lipid and cholesterol metabolism, and protein and amino acid metabolism, is first addressed. In addition, recent progress on maternal hepatic adaptations in nutrient metabolism during pregnancy is discussed. Finally, the factors that regulate hepatic nutrient metabolism during pregnancy are highlighted, and the factors include follicle-stimulating hormone, estrogen, progesterone, insulin-like growth factor 1, prostaglandins fibroblast growth factor 21, serotonin, growth hormone, adrenocorticotropic hormone, prolactin, thyroid stimulating hormone, melatonin, adrenal hormone, leptin, glucagon-like peptide-1, insulin glucagon and thyroid hormone. Our vision is that more attention should be paid to liver nutrient metabolism during pregnancy, which will be helpful for utilizing nutrient appropriately and efficiently, and avoiding liver diseases during pregnancy.


Assuntos
Insulina , Fígado , Gravidez , Feminino , Humanos , Fígado/metabolismo , Insulina/metabolismo , Hormônio do Crescimento/metabolismo , Glucagon/metabolismo , Nutrientes
5.
Physiol Rep ; 12(7): e15995, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38561245

RESUMO

Exercise has different effects on different tissues in the body, the sum of which may determine the response to exercise and the health benefits. In the present study, we aimed to investigate whether physical training regulates transcriptional network communites common to both skeletal muscle (SM) and subcutaneous adipose tissue (SAT). Eight such shared transcriptional communities were found in both tissues. Eighteen young overweight adults voluntarily participated in 7 weeks of combined strength and endurance training (five training sessions per week). Biopsies were taken from SM and SAT before and after training. Five of the network communities were regulated by training in SM but showed no change in SAT. One community involved in insulin- AMPK signaling and glucose utilization was upregulated in SM but downregulated in SAT. This diverging exercise regulation was confirmed in two independent studies and was also associated with BMI and diabetes in an independent cohort. Thus, the current finding is consistent with the differential responses of different tissues and suggests that body composition may influence the observed individual whole-body metabolic response to exercise training and help explain the observed attenuated whole-body insulin sensitivity after exercise training, even if it has significant effects on the exercising muscle.


Assuntos
Resistência à Insulina , Obesidade , Adulto , Humanos , Obesidade/metabolismo , Músculo Esquelético/metabolismo , Exercício Físico/fisiologia , Gordura Subcutânea/metabolismo , Insulina/metabolismo , Resistência à Insulina/fisiologia , Expressão Gênica , Tecido Adiposo/metabolismo
6.
Sci Rep ; 14(1): 7670, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561446

RESUMO

Dietary factors such as food texture affect feeding behavior and energy metabolism, potentially causing obesity and type 2 diabetes. We previously found that rats fed soft pellets (SPs) were neither hyperphagic nor overweight but demonstrated glucose intolerance, insulin resistance, and hyperplasia of pancreatic ß-cells. In the present study, we investigated the mechanism of muscle atrophy in rats that had been fed SPs on a 3-h time-restricted feeding schedule for 24 weeks. As expected, the SP rats were normal weight; however, they developed insulin resistance, glucose intolerance, and fat accumulation. In addition, skeletal muscles of SP rats were histologically atrophic and demonstrated disrupted insulin signaling. Furthermore, we learned that the muscle atrophy of the SP rats developed via the IL-6-STAT3-SOCS3 and ubiquitin-proteasome pathways. Our data show that the dietary habit of consuming soft foods can lead to not only glucose intolerance or insulin resistance but also muscle atrophy.


Assuntos
Diabetes Mellitus Tipo 2 , Intolerância à Glucose , Resistência à Insulina , Ratos , Animais , Resistência à Insulina/fisiologia , Intolerância à Glucose/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Atrofia Muscular/etiologia , Atrofia Muscular/metabolismo , Músculo Esquelético/metabolismo , Dieta , Dieta Hiperlipídica
8.
BMJ Open Diabetes Res Care ; 12(2)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575153

RESUMO

INTRODUCTION: Congenital hyperinsulinism (HI) is the leading cause of persistent hypoglycemia in infants. Current models to study the most common and severe form of HI resulting from inactivating mutations in the ATP-sensitive potassium channel (KATP) are limited to primary islets from patients and the Sur1 -/- mouse model. Zebrafish exhibit potential as a novel KATPHI model since they express canonical insulin secretion pathway genes and those with identified causative HI mutations. Moreover, zebrafish larvae transparency provides a unique opportunity for in vivo visualization of pancreatic islets. RESEARCH DESIGN AND METHODS: We evaluated zebrafish as a model for KATPHI using a genetically encoded Ca2+ sensor (ins:gCaMP6s) expressed under control of the insulin promoter in beta cells of an abcc8 -/- zebrafish line. RESULTS: We observed significantly higher islet cytosolic Ca2+ in vivo in abcc8 -/- compared with abcc8 +/+ zebrafish larvae. Additionally, abcc8 -/- larval zebrafish had significantly lower whole body glucose and higher whole body insulin levels compared with abcc8 +/+ controls. However, adult abcc8 -/- zebrafish do not show differences in plasma glucose, plasma insulin, or glucose tolerance when compared with abcc8 +/+ zebrafish. CONCLUSIONS: Our results identify that zebrafish larvae, but not adult fish, are a demonstrable novel model for advancement of HI research.


Assuntos
Hiperinsulinismo Congênito , Canais de Potássio Corretores do Fluxo de Internalização , Lactente , Adulto , Animais , Camundongos , Humanos , Canais KATP/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Hiperinsulinismo Congênito/genética , Insulina/metabolismo , Glucose , Trifosfato de Adenosina
9.
J Alzheimers Dis ; 98(4): 1169-1179, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38607755

RESUMO

Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by the accumulation of neurofibrillary tangles and amyloid-ß plaques. Recent research has unveiled the pivotal role of insulin signaling dysfunction in the pathogenesis of AD. Insulin, once thought to be unrelated to brain function, has emerged as a crucial factor in neuronal survival, synaptic plasticity, and cognitive processes. Insulin and the downstream insulin signaling molecules are found mainly in the hippocampus and cortex. Some molecules responsible for dysfunction in insulin signaling are GSK-3ß, Akt, PI3K, and IRS. Irregularities in insulin signaling or insulin resistance may arise from changes in the phosphorylation levels of key molecules, which can be influenced by both stimulation and inactivity. This, in turn, is believed to be a crucial factor contributing to the development of AD, which is characterized by oxidative stress, neuroinflammation, and other pathological hallmarks. Furthermore, this route is known to be indirectly influenced by Nrf2, NF-κB, and the caspases. This mini-review delves into the intricate relationship between insulin signaling and AD, exploring how disruptions in this pathway contribute to disease progression. Moreover, we examine recent advances in drug delivery systems designed to target insulin signaling for AD treatment. From oral insulin delivery to innovative nanoparticle approaches and intranasal administration, these strategies hold promise in mitigating the impact of insulin resistance on AD. This review consolidates current knowledge to shed light on the potential of these interventions as targeted therapeutic options for AD.


Assuntos
Doença de Alzheimer , Resistência à Insulina , Humanos , Doença de Alzheimer/patologia , Insulina/metabolismo , Resistência à Insulina/fisiologia , Glicogênio Sintase Quinase 3 beta , Peptídeos beta-Amiloides/metabolismo , Sistemas de Liberação de Medicamentos
10.
Expert Opin Ther Pat ; 34(1-2): 71-81, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38573177

RESUMO

INTRODUCTION: The neuropeptide relaxin-3/RXFP3 system belongs to the relaxin/insulin superfamily and is involved in many important physiological processes, such as stress responses, appetite control, and motivation for reward. Although relaxin-3 is the endogenous agonist for RXFP3, it can also bind to and activate RXFP1 and RXFP4. Consequently, research has been focused on the development of RXFP3-specific peptides and small-molecule ligands to validate the relaxin-3/RXFP3 system as a novel drug target. AREAS COVERED: This review provides an overview of patents on the relaxin-3/RXFP3 system covering ligand development and pharmacological studies since 2003. Related patents and literature reports were obtained from established sources including SciFinder, Google Patents, and Espacenet for patents and SciFinder, PubMed, and Google Scholar for literature reports. EXPERT OPINION: There has been an increasing amount of patent activities around relaxin-3/RXFP3, highlighting the importance of this novel neuropeptide system for drug discovery. The development of relaxin-3 derived peptides and small-molecule modulators, as well as behavioral studies in rodents, have shown that the relaxin-3/RXFP3 system is a promising drug target for treating various metabolic and neuropsychiatric diseases including obesity, anxiety, and alcohol addiction.


Assuntos
Neuropeptídeos , Relaxina , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Relaxina/metabolismo , Patentes como Assunto , Insulina/metabolismo , Receptores de Peptídeos/agonistas , Receptores de Peptídeos/metabolismo
11.
Nat Commun ; 15(1): 3318, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38632302

RESUMO

Pancreatic islets of Langerhans play a pivotal role in regulating blood glucose homeostasis, but critical information regarding their mass, distribution and composition is lacking within a whole organ context. Here, we apply a 3D imaging pipeline to generate a complete account of the insulin-producing islets throughout the human pancreas at a microscopic resolution and within a maintained spatial 3D context. These data show that human islets are far more heterogenous than previously accounted for with regards to their size distribution and cellular make up. By deep tissue 3D imaging, this in-depth study demonstrates that 50% of the human insulin-expressing islets are virtually devoid of glucagon-producing α-cells, an observation with significant implications for both experimental and clinical research.


Assuntos
Células Secretoras de Glucagon , Ilhotas Pancreáticas , Humanos , Pâncreas/metabolismo , Ilhotas Pancreáticas/metabolismo , Insulina/metabolismo , Células Secretoras de Glucagon/metabolismo , Glicemia/metabolismo , Secreção de Insulina
12.
Cell Biochem Funct ; 42(3): e4013, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38639198

RESUMO

Extracellular vesicles are small lipid bilayer particles that resemble the structure of cells and range in size from 30 to 1000 nm. They transport a variety of physiologically active molecules, such as proteins, lipids, and miRNAs. Insulin resistance (IR) is a pathological disease in which insulin-responsive organs or components become less sensitive to insulin's physiological effects, resulting in decreased glucose metabolism in target organs such as the liver, muscle, and adipose tissue. Extracellular vesicles have received a lot of attention as essential intercellular communication mediators in the setting of IR. This review looks at extracellular vesicles' role in IR from three angles: signaling pathways, bioactive compounds, and miRNAs. Relevant publications are gathered to investigate the induction, inhibition, and bidirectional regulation of extracellular vesicles in IR, as well as their role in insulin-related illnesses. Furthermore, considering the critical function of extracellular vesicles in regulating IR, the study analyzes the practicality of employing extracellular vesicles for medication delivery and the promise of combination therapy for IR.


Assuntos
Antineoplásicos , Vesículas Extracelulares , Resistência à Insulina , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais , Vesículas Extracelulares/metabolismo , Insulina/farmacologia , Insulina/metabolismo
13.
Cell Physiol Biochem ; 58(2): 144-155, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38639210

RESUMO

Diabetes mellitus type 1 (T1D) and type 2 (T2D) develop due to dysfunction of the Langerhans islet ß-cells in the pancreas, and this dysfunction is mediated by oxidative, endoplasmic reticulum (ER), and mitochondrial stresses. Although the two types of diabetes are significantly different, ß-cell failure and death play a key role in the pathogenesis of both diseases, resulting in hyperglycemia due to a reduced ability to produce insulin. In T1D, ß-cell apoptosis is the main event leading to hyperglycemia, while in T2D, insulin resistance results in an inability to meet insulin requirements. It has been suggested that autophagy promotes ß-cell survival by delaying apoptosis and providing adaptive responses to mitigate the detrimental effects of ER stress and DNA damage, which is directly related to oxidative stress. As people with diabetes are now living longer, they are more susceptible to a different set of complications. There has been a diversification in causes of death, whereby a larger proportion of deaths among individuals with diabetes is attributable to nonvascular conditions; on the other hand, the proportion of cancer-related deaths has remained stable or even increased in some countries. Due to the increasing cases of both T1D and T2D, these diseases become even more socially significant. Hence, we believe that search for any opportunities for control of this disease is an overwhelmingly important target for the modern science. We focus on two differences that are characteristic of the development of diabetes's last periods. One of them shows that all-cause death rates have declined in several diabetes populations, driven in part by large declines in vascular disease mortality but large increases in oncological diseases. Another hypothesis is that some T2D medications could be repurposed to control glycemia in patients with T1D.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Hiperglicemia , Células Secretoras de Insulina , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Células Secretoras de Insulina/metabolismo , Morte Celular , Insulina/metabolismo , Hiperglicemia/metabolismo , Estresse Oxidativo
14.
PLoS One ; 19(4): e0302041, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38626157

RESUMO

Gestational diabetes mellitus (GDM) in human patients disrupts glucose metabolism post-pregnancy, affecting fetal development. Although obesity and genetic factors increase GDM risk, a lack of suitable models impedes a comprehensive understanding of its pathology. To address this, we administered streptozotocin (STZ, 75 mg/kg) to C57BL/6N mice for two days before pregnancy, establishing a convenient GDM model. Pregnant mice exposed to STZ (STZ-pregnant) were compared with STZ-injected virgin mice (STZ-virgin), citrate buffer-injected virgin mice (CB-virgin), and pregnant mice injected with citrate buffer (CB-pregnant). STZ-pregnant non-obese mice exhibited elevated blood glucose levels on gestational day 15.5 and impaired glucose tolerance. They also showed fewer normal fetuses compared to CB-pregnant mice. Additionally, STZ-pregnant mice had the highest plasma C-peptide levels, with decreased pancreatic islets or increased alpha cells compared to CB-pregnant mice. Kidneys isolated from STZ-pregnant mice did not display histological alterations or changes in gene expression for the principal glucose transporters (GLUT2 and SGLT2) and renal injury-associated markers. Notably, STZ-pregnant mice displayed decreased gene expression of insulin-receiving molecules (ISNR and IGFR1), indicating heightened insulin resistance. Liver histology in STZ-pregnant mice remained unchanged except for a pregnancy-related increase in lipid droplets within hepatocytes. Furthermore, the duodenum of STZ-pregnant mice exhibited increased gene expression of ligand-degradable IGFR2 and decreased expression of GLUT5 and GLUT12 (fructose and glucose transporters, respectively) compared to STZ-virgin mice. Thus, STZ-pregnant mice displayed GDM-like symptoms, including fetal abnormalities, while organs adapted to impaired glucose metabolism by altering glucose transport and insulin reception without histopathological changes. STZ-pregnant mice offer a novel model for studying mild onset non-obese GDM and species-specific differences in GDM features between humans and animals.


Assuntos
Diabetes Mellitus Experimental , Diabetes Gestacional , Feminino , Gravidez , Camundongos , Humanos , Animais , Estreptozocina/toxicidade , Camundongos Endogâmicos C57BL , Insulina/metabolismo , Diabetes Mellitus Experimental/metabolismo , Obesidade , Glucose/metabolismo , Fenótipo , Citratos , Glicemia/metabolismo
15.
PLoS One ; 19(4): e0297572, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630788

RESUMO

BACKGROUND: Currently, it is acknowledged that vitamin E, insulin sensitizers and anti-diabetic drugs are used to manage non-alcoholic fatty liver disease (NAFLD), however, these therapeutic interventions harbour adverse side effects. Pioglitazone, an anti-diabetic drug, is currently the most effective therapy to manage NAFLD. The use of natural medicines is widely embraced due to the lack of evidence of their negative side effects. Rooibos has been previously shown to decrease inflammation and oxidative stress in experimental models of diabetes, however, this is yet to be explored in a setting of NAFLD. This study was aimed at investigating the effects of an aspalathin-rich green rooibos extract (Afriplex GRTTM) against markers of hepatic oxidative stress, inflammation and apoptosis in an in vitro model of NAFLD. METHODS: Oleic acid [1 mM] was used to induce hepatic steatosis in C3A liver cells. Thereafter, the therapeutic effect of Afriplex GRTTM, with or without pioglitazone, was determined by assessing its impact on cell viability, changes in mitochondrial membrane potential, intracellular lipid accumulation and the expression of genes and proteins (ChREBP, SREBF1, FASN, IRS1, SOD2, Caspase-3, GSTZ1, IRS1 and TNF-α) that are associated with the development of NAFLD. RESULTS: Key findings showed that Afriplex GRTTM added to the medium alone or combined with pioglitazone, could effectively block hepatic lipid accumulation without inducing cytotoxicity in C3A liver cells exposed oleic acid. This positive outcome was consistent with effective regulation of genes involved in insulin signaling, as well as carbohydrate and lipid metabolism (IRS1, SREBF1 and ChREBP). Interestingly, in addition to reducing protein levels of an inflammatory marker (TNF-α), the Afriplex GRTTM could ameliorate oleic acid-induced hepatic steatotic damage by decreasing the protein expression of oxidative stress and apoptosis related markers such as GSTZ1 and caspase-3. CONCLUSION: Afriplex GRTTM reduced hepatic steatosis in oleic acid induced C3A liver cells by modulating SREBF1, ChREBP and IRS-1 gene expression. The extract may also play a role in alleviating inflammation by reducing TNF-α expression, suggesting that additional experiments are required for its development as a suitable therapeutic option against NAFLD. Importantly, further research is needed to explore its antioxidant role in this model.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Caspase 3/metabolismo , Ácido Oleico/farmacologia , Pioglitazona/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo , Fígado/metabolismo , Metabolismo dos Lipídeos , Inflamação/metabolismo , Insulina/metabolismo , Dieta Hiperlipídica , Glutationa Transferase/metabolismo
16.
PLoS One ; 19(4): e0301496, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635745

RESUMO

Obesity leads to insulin resistance (IR) and type 2 diabetes. In humans, low levels of the hormone prolactin (PRL) correlate with IR, adipose tissue (AT) dysfunction, and increased prevalence of T2D. In obese rats, PRL treatment promotes insulin sensitivity and reduces visceral AT adipocyte hypertrophy. Here, we tested whether elevating PRL levels with the prokinetic and antipsychotic drug sulpiride, an antagonist of dopamine D2 receptors, improves metabolism in high fat diet (HFD)-induced obese male mice. Sulpiride treatment (30 days) reduced hyperglycemia, IR, and the serum and pancreatic levels of triglycerides in obese mice, reduced visceral and subcutaneous AT adipocyte hypertrophy, normalized markers of visceral AT function (PRL receptor, Glut4, insulin receptor and Hif-1α), and increased glycogen stores in skeletal muscle. However, the effects of sulpiride reducing hyperglycemia were also observed in obese prolactin receptor null mice. We conclude that sulpiride reduces obesity-induced hyperglycemia by mechanisms that are independent of prolactin/prolactin receptor activity. These findings support the therapeutic potential of sulpiride against metabolic dysfunction in obesity.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperglicemia , Resistência à Insulina , Humanos , Camundongos , Masculino , Ratos , Animais , Camundongos Obesos , Antagonistas dos Receptores de Dopamina D2 , Prolactina , Receptores da Prolactina , Diabetes Mellitus Tipo 2/tratamento farmacológico , Sulpirida/farmacologia , Sulpirida/uso terapêutico , Obesidade/tratamento farmacológico , Obesidade/etiologia , Dieta Hiperlipídica/efeitos adversos , Hiperglicemia/tratamento farmacológico , Hipertrofia , Insulina/metabolismo
17.
Mol Biol Rep ; 51(1): 516, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622329

RESUMO

BACKGROUND: Resveratrol has received much attention due to its beneficial effects including antioxidant activity. The purpose of this study was to investigate the therapeutic effects of resveratrol treatment on oxidative stress and insulin resistance in the skeletal muscle of high-fat diet (HFD)-fed animals. METHODS AND RESULTS: A total of 30 six-week-old C57BL/6J mice were randomly allocated to three groups (10 animals in each group): The control group in which mice were fed a normal chow diet (NCD); the HFD group in which mice were fed an HFD for 26 weeks; and the HFD-resveratrol group in which HFD was replaced by a resveratrol supplemented-HFD (400 mg/kg diet) after 10 weeks of HFD feeding. At the end of this period, gastrocnemius muscle samples were examined to determine insulin resistance and the oxidative status in the presence of HFD and resveratrol. Resveratrol supplementation in HFD-fed mice reduced body and adipose tissue weight, improved insulin sensitivity, and decreased oxidative stress as indicated by lower malonaldehyde (MDA) levels and higher total antioxidant capacity. The supplement also increased the expression and activity of antioxidative enzymes in gastrocnemius muscle and modulated Nrf2 and Keap1 expression levels. CONCLUSIONS: These results suggest that resveratrol is effective in improving the antioxidant defense system of the skeletal muscle in HFD-fed mice, indicating its therapeutic potential to combat diseases associated with insulin resistance and oxidative stress.


Assuntos
Antioxidantes , Resistência à Insulina , Camundongos , Animais , Antioxidantes/metabolismo , Resveratrol/farmacologia , Resveratrol/metabolismo , Resistência à Insulina/fisiologia , Dieta Hiperlipídica/efeitos adversos , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Transdução de Sinais , Insulina/metabolismo
18.
Nutrients ; 16(5)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38474775

RESUMO

Protein tyrosine phosphatases (PTPs) are pivotal contributors to the development of type 2 diabetes (T2DM). Hence, directing interventions towards PTPs emerges as a valuable therapeutic approach for managing type 2 diabetes. In particular, PTPN6 and PTPN9 are targets for anti-diabetic effects. Through high-throughput drug screening, quercetagitrin (QG) was recognized as a dual-target inhibitor of PTPN6 and PTPN9. We observed that QG suppressed the catalytic activity of PTPN6 (IC50 = 1 µM) and PTPN9 (IC50 = 1.7 µM) in vitro and enhanced glucose uptake by mature C2C12 myoblasts. Additionally, QG increased the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and insulin-dependent phosphorylation of Akt in mature C2C12 myoblasts. It further promoted the phosphorylation of Akt in the presence of palmitic acid, suggesting the attenuation of insulin resistance. In summary, our results indicate QG's role as a potent inhibitor targeting both PTPN6 and PTPN9, showcasing its potential as a promising treatment avenue for T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Insulina/metabolismo , Fosforilação , Proteínas Tirosina Fosfatases/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo
19.
Molecules ; 29(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542928

RESUMO

Diabetes, particularly type 2 diabetes (T2D), is the main component of metabolic syndrome. It is highly prevalent and has drastically increased with sedentary lifestyles, notably behaviors linked to ease of access and minimal physical activity. Central to this condition is insulin, which plays a pivotal role in regulating glucose levels in the body by aiding glucose uptake and storage in cells, and what happens to diabetes? In diabetes, there is a disruption and malfunction in insulin regulation. Despite numerous efforts, effectively addressing diabetes remains a challenge. This article explores the potential of photoactivatable drugs in diabetes treatment, with a focus on light-activated insulin. We discuss its advantages and significant implications. This article is expected to enrich the existing literature substantially, offering a comprehensive analysis of potential strategies for improving diabetes management. With its minimal physical intrusion, light-activated insulin promises to improve patient comfort and treatment adherence. It offers precise regulation and localized impact, potentially mitigating the risks associated with conventional diabetes treatments. Additionally, light-activated insulin is capable of explicitly targeting RNA and epigenetic factors. This innovative approach may pave the way for more personalized and effective diabetes treatments, addressing not only the symptoms but also the underlying biological causes of the disease. The advancement of light-activated insulin could revolutionize diabetes management. This study represents a pioneering introduction to this novel modality for diabetes management.


Assuntos
Diabetes Mellitus Tipo 2 , Insulina , Humanos , Insulina/metabolismo , Glicemia , Diabetes Mellitus Tipo 2/metabolismo , Exercício Físico
20.
Nat Metab ; 6(3): 514-530, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38504131

RESUMO

Mitochondrial quality control failure is frequently observed in neurodegenerative diseases. The detection of damaged mitochondria by stabilization of PTEN-induced kinase 1 (PINK1) requires transport of Pink1 messenger RNA (mRNA) by tethering it to the mitochondrial surface. Here, we report that inhibition of AMP-activated protein kinase (AMPK) by activation of the insulin signalling cascade prevents Pink1 mRNA binding to mitochondria. Mechanistically, AMPK phosphorylates the RNA anchor complex subunit SYNJ2BP within its PDZ domain, a phosphorylation site that is necessary for its interaction with the RNA-binding protein SYNJ2. Notably, loss of mitochondrial Pink1 mRNA association upon insulin addition is required for PINK1 protein activation and its function as a ubiquitin kinase in the mitophagy pathway, thus placing PINK1 function under metabolic control. Induction of insulin resistance in vitro by the key genetic Alzheimer risk factor apolipoprotein E4 retains Pink1 mRNA at the mitochondria and prevents proper PINK1 activity, especially in neurites. Our results thus identify a metabolic switch controlling Pink1 mRNA localization and PINK1 activity via insulin and AMPK signalling in neurons and propose a mechanistic connection between insulin resistance and mitochondrial dysfunction.


Assuntos
Proteínas Quinases Ativadas por AMP , Resistência à Insulina , Proteínas Quinases , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Insulina/metabolismo , Neurônios/metabolismo , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ubiquitina-Proteína Ligases/genética , Animais , Camundongos , Proteínas Quinases/genética , Proteínas Quinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...